Mochammad Nur Masrukhan, Mochamad Piono Mulyo, Dwi Ajiatmo, Machrus Ali


Characters of the DC motor is non linear and for the permanent magnet is linear. Non- linear  characteristics  of  DC  motors  such  as  friction  and  saturation  can  degrade  the performance of conventional controls. This can be overcome by intelligent control based Artificial Intelligent (AI). In this study, designed the model of DC motor speed control using multiple  controls,  which autotuning  matlab  PID  control,  PID  with  tuning  Ant  Colony Optimization (ACO). The results of the performance of the model DC motor speed control using the PID-ACO found to have a steady state error, settling time and overshoot are better than the PID Autotuning Matlab, PID-ZN (Ziegler Nichols PID). From the results of running the program get that PID-ACO in this study is the best controller with the fastest time settling is 0.55 seconds and overshot the smallest is 1,017.

Teks Lengkap:

PDF (English)


Dwi Hartanto, Thomas Wahyu, Analisis Dan

Desain System Kontrol Dengan MATLAB,

Andy.Yokyakarta. 2001.

Husein Ahmad , Gagan Signh, Controlling of D.C.

Motor using Fuzzy Logic Controller“,

Conference on Advances in Communication

and Control Systems 2013 (CAC2S 2013)

H. Shayeg, A. Safari and H. A. Shayanfar,

Multimachine Power System Stabilizer Design

Using Particle Swarm Optimization

Algorithm”, International journal of Electrical

Power and Energy System Engineering, 2008,


Karaman S, Ozturk I, Yalcın H, Kayacier A, Sagdic

O: Comparison of Adaptive Neuro Fuzzy

Inference System and artificial neural

networks for estimation of oxidation

parameters of sunflower oil added with some

natural byproduct extracts, J. Sci. Food Agric.

(2012) 49 – 58

Muhammad H. Rashid, Power Electronics Circuits,

Devices, and Applications, Prentice Hall, 2004

Sanju Saini, Arvind Kumar, Speed Control of

Separately Excited D.C Motor using Self

Tuned ANFIS Techniques, IJCST Vol. 3,

, India.

Walaa M Strogy, Speed Control of DC Motor

Using PID Controller Base On Artificial

Intellegence Technique, CoDIT’13 IEEE,

Yang, X. S. (2009). "Ant Colony Optimization for

multimodal optimization". Stochastic

Algorithms: Foundations and Applications,

SAGA 2009. Lecture Notes in Computer

Sciences 5792.


  • Saat ini tidak ada refbacks.