Pengaruh Helical Turbulator Terhadap Efektifitas Double Pipe Heat Exchanger

Mufid Mufid, Windi Zamrudy, Bambang Widiono

Abstract


Saat ini kebutuhan akan energi di dunia terus meningkat, sejalan dengan semakin tumbuhnya industri untuk menopang kehidupan manusia. Namun kenaikan kebutuhan energi tersebut tidak diimbangi dengan bertambahnya sumber energi, sehingga harga energi semakin mahal. Untuk meminimalisir kebutuhan energi, maka perlu dicari sumber-sumber energi alternatif baru, terutama sumber energi baru dan terbarukan. Disamping itu perlu dilakukan pengelolaan energi yang lebih baik, sehingga kebutuhan energi dunia bisa dikurangi. Heat exchanger memiliki pipa luar stainless steel dengan diameter dalam (Do) 3,5 inc, ketebalan pipa (To) 1,5 mm, dan panjang pipa (Lo) 790mm dan pipa dalam (Di) 1 3/8 inc, ketebalan(Ti) 0,6 mm, dan panjang pipa (Li) 920mm, .dengan air dingin dan air panas yang digunakan sebagai fluida uji di sisi shell dan tabung. Helical turbulator dari besi (mild steel) dengan dimensi geometris jarak antar elemen sebesar 50 mm berdiameter dalam (Di) 5/16 inc dan diameter luar(Do) 1 5/16 inc dengan panjang 750mm dimasukkan dalam inner tube dari heat exchanger. Air panas memasuki tabung dengan variasi flowate mulai 400 l/jam sampai 900 l/jam, sedangkan flowrate air dingin konstan 900 l/jam. Hasil penelitian dengan disisipkannya helical turbulator pada heat exchanger akan mengakibatkan peningkatan laju perpindahan kalor dibandingkan plain tube. Helical turbulator sebagai turbulator juga mengakibatkan peningkatan efektifitas termal heat exchanger lebih besar dari pada plain tube.

Full Text:

PDF

References


Amala M. Justus Selvam, Senthil Kumar P, S. Muthuraman. 2009. The characteristics of brazed plate heat exchangers with different chevron angles. Asian Research Publishing Network (ARPN) 4(10): 19-26.

Bergles, A.E. 1998, The Imperative to Enhance Heat Transfer, in: Energy Conservation through Heat Transfer Enhancement of Heat Exchanger. NATO Advanced Study Institute. Izmir-Turkey.

Çengel, Yunus A. 2003. Heat Transfer A Practical Approach, 2nd edition. New York: Mc Graw Hill Companies Inc.

Eiamsa-ard S., P. Promvonge. 2006. Heat transfer characteristics in a tube fitted with helical screw-tape with/without core-rod insert. International Communication in Heat and Mass Transfer 34: 176-185.

Eiamsa-ard S., P Promvonge, Chinaruk Thiaanpong, Somsak Pethkool. 2008. Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with louvered strip insert. International Communication in Heat and Mass Transfer 35: 120-129.

Engineering data book III 5-1. Wolverine Tube Heat Transfer Data Book. Wolverine Tube Inc.

URL:http://www.wlv.com/products/databook/ch2_2.pdf. 20 Nop 2010

Geankoplis, Christie John. 2003, Transport Processes and Separation Process Principle, 4th edition Pearson Professional Education..

Johar Gaurav, Virendra Hasda. 2010, Experimental Studies On Heat Transfer Augmenatation Using Modified Reduced Width Twisted Tapes (RWTT) As Inserts For Tube Side Flow of Liquids, Thesis, Department of Chemical Engineering National Institute of Technology Rourkela.

Kalaivanan R., R. Rathnasamy. 2010. Experimental investigation of forced convective heat transfer in rectangular micro-channels, ARPN Journal of Engineering and Applied Sciences 5(5):21 – 26.

Lunsford, Kevin M. 1998. Increasing Heat Exchanger Performance. Bryan: Texas US. Bryan Research & Engineering, Inc.

Murugesan, P. K. Mayilsamy. S Suresh, PSS Srinivasan. 2009. Heat transfr and pressure drop characteristics of turbulent flowin a tube fitted with trapezoidal-cut twisted tape insert, International Journal of Academic Research 1(1): 123-128.

Naga S. Sarada, A.V. Sita Rama Raju, K. Alyani Radha, 2010, Experimental numerical analysis enhancement of heat transfer in a horizontal circular tube using mesh inserts in turbulent region, European Journal of Mechanical and Environmental Engineering 2: 3 - 16

Sahiti, N. F. Durst, A. Dewan, 2005, Heat transfer enhancement by pin element, International Journal of Heat Transfer 48: 4738-4747.

Shah, Ramesh K. & Sekulic, Dusan P. 2003. Fundamental of Heat Exchanger Design. Hoboken New jersey: John Wiley & Sons Inc.

Thirumarimurugan, M. T. Kannadasan, E. Ramasany. 2008. Simulation studies on a cross flow plate turbulator heat exchanger. American Journal of Applied Sciences 5(10): 1318-1321.


Refbacks

  • There are currently no refbacks.